Unit

Chemical Kinetics

Chemical kinetics is the branch of chemistry which
addresses the question "How fast do reactions go?"
Chemical kinetics includes investigations of how
different experimental conditions can influence the speed
of a chemical reaction and yield information about the
reaction's mechanism and transition states.

RATE OF CHEMICAL REACTION

• The rate of reaction is the change in the concentration of any one of the reactants or products per unit time.

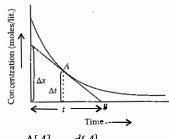
Rate of reaction =
$$\frac{\text{decrease in conc. of reactant}}{\text{time taken}}$$
$$= \frac{\text{increase in conc. of product}}{\text{time taken}}$$


Consider a reaction : $A + B \longrightarrow C + D$

Then rate of reaction

$$= -\frac{\Delta[A]}{\Delta t} = -\frac{\Delta[B]}{\Delta t} = \frac{\Delta[C]}{\Delta t} = \frac{\Delta[D]}{\Delta t}$$

Negative sign shows decrease in concentration with time and positive sign shows increase in concentration with time.


- Unit: Rate = $\frac{\text{concentration}}{\text{time}} = \frac{\text{mol/litre}}{\text{s}}$ = mol litre⁻¹ s⁻¹
- Average rate of reaction: The rate measured over a long time interval is called average rate.

Average rate of reaction =
$$\frac{-\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t}$$

$$r_{\text{avg}} = -\frac{[A_2] - [A_1]}{t_2 - t_1} = \frac{[B_2] - [B_1]}{t_2 - t_1}$$

• Instantaneous rate: The rate of change of concentration of any one of the reactants or products over a very small interval of time.

$$r_{\text{inst.}} = \lim_{\Delta t \to 0} -\frac{\Delta[A]}{\Delta t} = -\frac{d[A]}{dt}$$

$$r_{\text{inst.}} = \frac{\text{Intercept along coordinate}}{\text{Intercept along abscissa}} = \frac{\Delta x}{\Delta t}$$

Factors Affecting Rate of Reaction

- Concentration of reactants: As the concentration of reactants increases, the reaction rate increases. A higher concentration of reactants lead to more effective collisions per unit time, which leads to an increasing reaction rate (except for zero order reactions).
- Catalysts: Catalyst is a substance that increases the rate of a reaction but is not consumed in the reaction. It does so by lowering the activation energy (E_a) . Possible ways of lowering the E_a of a reaction:
 - Increase the frequency of collisions between the reactant molecules.
 - Change the relative orientation of the reactant molecules.
 - Provide an alternate pathway or mechanism for the reaction. For equilibrium reactions, both the forward and reverse reaction rates are affected by the catalyst. i.e., E_a for both directions is decreased.

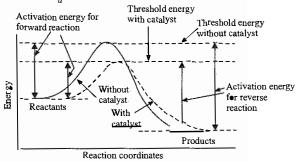


Fig: Effect of catalyst on the rate of reaction